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Abstract: Solar power has become an attractive alternative of electricity energy. Solar cells that form the basis of a 

solar power system are mainly based on multi-crystalline silicon. A set of solar cells are assembled and 

interconnected into a large solar module to offer a large amount of electricity power for commercial applications. 

Many defects in a solar module cannot be visually observed with the conventional  CCD imaging system. This 

paper aims at defect ins pection of solar modules in electroluminescence (EL) images . The solar module charged 

with electrical  current will emit infrared light whose intensity will be darker for intrinsic crystal grain boundaries 

and extrinsic defects including micro-cracks, breaks and finger interruptions. The EL image can distinctly 

highlight the invisible defects but also create a random inhomogeneous background, which makes the inspection 

task extremely difficul t. The proposed method is based on independent component analysis (ICA), and involves a 

learning and a detection stage. The large solar module image is first divided into small solar cell sub images. In the 

training  stage, a set of defect-free solar cell sub images are used to find a set of independent basis images using 

ICA. In the ins pection stage, each solar cell sub image under inspection is reconstructed as a linear combination of 

the learned basis images. The coefficients of the linear combination are used as the feature vector for classification. 

Also, the reconstruction error between the test image and its reconstructed image from the ICA basis images is 

also evaluated for detecting the presence of defects. Experimental results have shown that the image reconstruction 

with basis images distinctly outperforms the ICA feature extraction approach. It can achieve a mean recogni tion 

rate of 93.4%  for a set of 80 test samples  

Keywords: Defect detection, independent component analysis , surface inspection, solar module. 

I.    INTRODUCTION 

Electricity generation is a critical issue in the world. Since, the electricity generation has often been costly, renewable and 

sustainable energies like solar energy has been used as an efficient  solution (Lin, 2011) 31. Photovoltaic (PV) systems or 

also called solar cells are often used to convert solar light to electricity. It is a clean, quiet and reliable way to generate 

electricity. Solar power has become an attractive alternative of electricity energy due to growing environmental concerns 

and global o il shortage. Solar cells that convert the photons from the sun to electricity are mostly based  on crystalline 

silicon in the current market  because it can generate good performance in  usable lifespan and conversion efficiency 

among the currently available techniques. Multicrystalline solar cells are more popular than monocrystalline solar cells. 

They dominate the production volume in the photovoltaic industry due to lower manufacturing costs. The surface o f a 

multicrystalline solar wafer shows multiple 

 

Fig. 1. CCD-captured images of (a) multicrystalline solar wafer; (b) solar cell ;(c) solar module composed of 36 solar cells. 
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Crystal grains of random shapes and sizes in random positions and orientations. It results in a  heterogeneous texture in 

the surface. No two solar wafer surfaces contain completely identical  patterns. A solar wafer is a thin  slice of a silicon 

ingot. It is further p rocessed and fabricated into a solar cell that forms the basic unit of a solar power system. A set of 

solar cells are assembled  and interconnected into a solar module to offer a large amount of electricity power for a variety 

of commercial applicat ions. Fig. 1(a) shows the image of a defect-free multicrystalline solar wafer. It contains random 

crystal grains on the surface. Fig. 1(b) is a solar cell image taken by a typical charge-coupled device (CCD) camera, 

where the vertical thin metal strips are finger electrodes that supply current to the two horizontal thick bus bars. The bus 

bars are used for interconnecting solar cells  To make a solar module. Fig. 1(c) demonstrates a CCD-captured solar module 

image. It  is composed of a matrix o f 36 (6 6) solar cells. Image processing techniques have become an important tool  for 

biometric recognition  [1], [2], robotic automation [3], [4] and  industrial inspection [5]–[7]. The quality inspection of a  

solar module in manufacturing is very important to ensure the expected conversion efficiency and durable lifespan. A few 

automatic defect detection algorithms in the literature have been focused on the detection of defects in solar wafers  and 

solar cells. The inspection in the early manufacturing stages can prevent delivering defective materials to the subsequent 

process. However, some of crit ical defects including micro-cracks, breaks and finger interruptions may inevitably occur in 

solar modules during the transportation, handling and assembly. Fuyuki and Kit iyanan [8] have also pointed out that the 

point-pressure cracks due to the failure in  the metal wire soldering could occur in the solar module assembly  process. The 

defects of a solar module may reduce the current or even consume the power stored in the battery bank. They may also 

cause thermal effect that deteriorates the materials and eventually shorten the lifespan of the solar module. Th is paper 

proposes an efficient machine v ision scheme for automat ic defect detection in multicrystalline solar modules. It can detect 

subtle defects in solar modules with inhomogeneous surfaces, and is computationally very fast to implement. It requires 

no complicated feature design and feature extraction process for distinguishing local defects from a wide variety of crystal 

grain patterns.  

Due to the random crystal grain surface of a solar cell or interior defects that do not visually appear on the cell surface, 

automatic defect detection in solar modules with the typical CCD camera and l ighting system cannot be effectively 

realized. In order to highlight the deficiencies that degrade the conversion efficiency of a solar module, the 

electroluminescence (EL) imaging technique [8]–[10] has been proposed in recent years. In the EL imaging sys tem, 

current is sent through a solar module in a darkened room, and then a cooled Si -CCD or In GaAs camera is used to 

capture the infrared light emitting from the excited solar module. Areas of crystal silicon with higher conversion 

efficiency exh ibit brighter luminescence in the sensed image. Process deficiencies such as micro -cracks, b reaks and finger 

interruptions will appear as dark regions  because they are inactive and hardly emit light. The dislocation and grain 

boundary of silicon wafers also create dark regions in the background of the EL image. Because the crystal grain pattern 

is random and unique for each individual multicrystalline solar wafer, the crystal grain backgrounds of all solar cells in  a 

solar module are also randomly present in the EL image. This causes automatic defect detection of solar modules in EL 

images extremely difficult.  Fig. 2(a) and (b) demonstrates the EL images of a defect-free and a defective solar module, 

respectively. As seen in Figs. 1(c) and 2(b), the solar module captured in the CCD image cannot detect the inner micro-

cracks and some subtle local defects, while the EL image can well present various defects embedded  in the solar module. 

Fig. 3(a)–(c) further shows three enlarged solar cell sub images in a solar module, which contain respectively micro-crack, 

break and finger interruption. As seen in Fig. 2(a), each solar cell in the solar module presents a random background 

pattern. The defective solar cells in a solar module  can be visually present in the EL image, as shown in Fig. 2(b). Because 

a typical solar module is composed of multip le solar  cells in series, the image size of a solar module is generally  very 

large. However, the local defects of a s mall solar cell in the module image could be very  small. The large image size  with 

a low resolution of defects demands a very efficient and yet very effective automatic visual inspection scheme for defect  

detection of multicrystalline solar modules in EL images. As aforementioned, most of the machine vision algorithms  for 

defect detection in the photovoltaic industry are mainly focused  on the process levels of solar wafers and solar cells. Fu  et 

al. [11] presented a machine vision method to detect cracks                                                                                

 

Fig. 2. Demonstrative EL images of (a) defect-free solar module, and (b) defective solar module. 
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Fig. 3. Defect types of solar cells displayed in the EL image: (a) micro-crack; (b) break; (c) finger interruption. in solar cells by 

evaluating the geometric features of the defect. 

The method can only identify cracks occurred in the cell edges  with d istinct gray levels from their surrounding. Ordaz and 

Lush [12] analyzed the conversion efficiency of a solar cell based on  the gray-level distribution in the EL image. The 

gray-level histogram g ives only the informat ion about the overall proportion of dark regions in the EL image. It  cannot be 

used to detect the presence/absence of local s mall defects in the EL image. Pilla  et al. [13] used the thermographic 

technique to highlight cracks  in solar cells.  

Recently, Tsai et al. [14] p resented an anisotropic diffusion algorithm for detecting micro-cracks appeared on the solar 

wafer surface. The sensed image is obtained from a typical CCD camera and light source that shows the cracks with low 

gray levels and high grad ients. The diffusion process smoothes  the suspected defect region and preserves the crystal grain 

background. The crack location can then be well detected by  subtracting the diffused image from the orig inal image. The 

method is specifically designed to identify micro-cracks by assuming micro-cracks present darker intensity and higher 

gradient from their surrounding in the CCD-captured image. The typical CCD image cannot detect the invisible inner 

cracks and the algorithms can only  detect the specific outer micro-cracks in solar wafers. Tsai and Luo [15] fu rther 

proposed a mean-shift algorithm to detect three defect types of saw-mark, fingerprint and contamination in 

multicrystalline solar wafers. The target defects generally present high variation of gradient directions, while crystal grain 

edges show more consistent gradient directions. The original gray-level wafer image is first converted into an entropy 

image, where each pixel defined in a s mall neighborhood window is represented by the entropy of gradient  directions. The 

mean-shit smoothing process is then performed to remove noise and grain edges in the entropy image. The final edge 

points remained in the filtered image are identified as defective ones. Chiou et al. [16] used a near infrared imaging 

system to detect micro-cracks in  solar wafers. The intensities of a micro-crack are darker than those of the surrounding 

grain background in the sensed image. A local thresholding and a region-growing segmentation, fo llowed by 

morphological post-processing and blob analysis, are used to detect the dark micro-cracks. The method is performed in 

the solar wafer process, but not in the final solar module process. It is assumed that  the sensed micro-crack is significantly 

darker than the crystal grains by infrared  lighting. A  dark, thin  elongated crystal grain  in  the defect -free solar wafer could 

be falsely detected as a defect. It cannot be directly extended for detecting various de fect types found in solar modules. 

The currently available defect detection algorithms reviewed above are generally  applied  to detect defects with distinct 

geometric and intensity features, or are computationally intensive to detect defects in a high -resolution image. Since the 

EL image of a solar module under inspection is generally very large in size and local defects in a solar cell subimage is 

relatively very  small in a random background, we need a fast detection algorithm to screen all possible defective solar 

cells in the large solar module image. The proposed method is based on the independent component analysis (ICA) 

technique [17]. ICA is a novel statistical signal processing technique to extract independent sources given only observed 

data that are mixtures of unknown sources without any prior knowledge of the mixing mechanis m. It has been applied in 

texture analysis [18], [19] that uses either the estimated independent components or the column vectors of the estimated 

mixing matrix as features for texture classification/segmentation. The ICA techniques have also been applied for surface 

defect detection of textile fabrics [20], [21] and liquid crystal display (LCD) panels [22] in manufacturing, and for grading  

tomato ripening [23] in agriculture. A ll the ICA -based defect detection methods are only applicable to non-textured or 

homogeneously- textured surfaces. They cannot be extended for defect detection in the EL images with inhomogeneous 

background patterns. The proposed ICA-based defect detection scheme involves a learn ing process and an inspection 
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process. Each  solar module image is first partitioned into individual solar cell subimages. In the learn ing process, a set of  

defect-free solar cell subimages are randomly  chosen from d ifferent solar modules. Each  2D solar cell subimage used for 

training is reshaped as a 1D signal and forms  a row vector in the data matrix. The ICA technique  is then used to find a set 

of statistically independent basis  images from the training data matrix. In the inspection process, the solar module image 

is also first divided into individual solar cell subimages. A test solar cell subimage is reconstructed as a linear combination 

of the learned basis images. It is expected that a defect-free solar cell subimage can be well represented by the basis 

images and the reconstructed image of a defective solar cell subimage will be distinctly deviated from its orig inal  one. In 

this study, we evaluate two ICA-based approaches for identifying the presence or absence of defects in  a s olar cell 

subimage. The first approach is based on feature extraction and  the second approach is based on image reconstruction 

from ICA basis images. The first ICA approach uses the coefficients  of the linear combination of basis images as the 

feature vector. It is then compared with that of each t rain ing sample in the data  set by a d istance measure, and the 

minimum d istance among all t rain ing samples is used as the discrimination measure. The second ICA approach simply 

calculates the reconstruction error between the original solar cell subimage under inspection and  its reconstructed image 

from the basis images. If the distance or reconstruction error is larger than a predetermined threshold, it  is identified as a 

defective solar cell sub image. Otherwise, it is declared as a defect-free sub image. The performance between these two 

ICA-based approaches will be evaluated by a set of EL images of solar modules. The proposed method can fast  detect the 

presence/absence of defects in solar modules, but it  cannot identify  the actual shape and location of a defect in the image. 

The paper is organized as follows: Section II first discusses  the basic ICA model, fo llowed by the process for extracting 

independent basis images from a set of training samples. The feature extraction and image reconstruction from the ICA 

basis images for detecting the presence/absence of defects in an inspection  image are then presented. Section III evaluates 

the performance of the proposed ICA-based detection methods and analyzes the effect of changes in the number of basis 

images. The comparative study between the proposed method and the existing methods of adaptive thresholding and gray-

level morphology is also presented in this section. The paper is concluded in Section IV. 

II.     ICA BASIS IMAGES FOR DEFECT DETECTION 

The EL image of a multicrystalline solar module investigated  in this study present multip le solar cell subimages, each 

containing randomly-shaped dark regions in the background. The critical defects found in a solar module are micro-

cracks, breaks and finger interruptions. They are present as dark line- or barshaped regions, or divide a region into a bright 

and a dark area in the EL image, as seen in Fig. 3(a)–(c). There are no straightforward features based on geometric shapes 

and intensities to distinguish the difference between  defect reg ions and the dark regions  in  the background. The proposed 

method uses ICA to find a set of representative basis images that can best describe various  defect-free solar cell 

subimages. Each  solar cell subimage partit ioned from a large EL image of solar module is then represented  as a linear 

combination of the basis images. In order to inspect individual solar cells in the large solar module, the solar cells in the 

whole EL image must be partitioned into small subimages, each containing exactly  one solar cell. It  can be observed from 

the solar module image in Fig. 2 that the spacing between adjacent solar cells in either horizontal or vertical direction is 

straightly and continuously dark in the whole EL image of a solar module. Horizontal and vertical project ions  that 

accumulate the gray levels of each row and column in the solar module image are first constructed. The local valleys  (i.e., 

local min ima) of the project ion then indicate the spacing between adjacent solar cells. Two adjacent local valleys in the 

same projection direction are fine-tuned so that each partitioned solar cell subimage gives the same size. 

 

Fig. 4. Three line structuring elements in directions (a) 135 , (b) 45 and (c) 90 for background smoothing. 
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The proposed defect detection scheme in this paper includes the off-line learning of ICA basis images and the on-line 

detection of defective subimages. For either o ff-line learning or on-line detection, a solar module must be first partitioned 

into solar cell subimages using the gray-level project ion described above. The subsequent learning and detection 

processes are all carried out for solar cell subimages. In the o ff-line learn ing stage, the ICA model is used to find a set of 

independent basis  images from randomly sampled defect-free solar cell subimages. In the on-line detection stage, feature 

extraction and image reconstruction from the basis images are used to evaluate the presence/absence of defects in the 

inspection image. In the following subsections, a morphological preprocessing  for image smoothing is first present. The 

basis ICA model is then briefly discussed, followed by the off-line learning of independent basis images. The on-line 

detections with feature extraction and image reconstruction are finally described. 

A. Morphological Smoothing: 

As seen in Fig. 2, each solar cell subimage presents a random dark-reg ion pattern in the background. Some of the dark 

regions are similar to the defect reg ions. In order to s mooth the dark-region background and preserve the defect shapes in 

the EL image, a  specific morphological s moothing process is preformed  first in  the EL image before it  is used for off-line 

learning and on-line detection. As observed in Fig. 3(a)–(c), defects of micro-cracks, breaks and finger interruptions are 

mostly line o r bar-shaped. We therefore design three structuring elements (SEs) in the directions of 45 , 90 and 135 , each 

of length L p ixels and width 1 pixel, as shown in Fig. 4. The length is generally larger than the largest dimension of a 

random dark region but smaller than the defect length so that most of the dark reg ions in the background can be smoothed, 

and yet the defects can be well preserved in the filtered image. In this  study, the length is given by 13. For a given pixel 

point(x,y) with gray  level f(x,y)  , the gray levels in each of the three SEs are accumulated. Given the origin  of the image 

in the upper-left corner, we have 

 

 

It is expected that a line- o r bar-shaped defect will have a very  small accumulated magnitude. We thus select the SE with 

the minimum accu mulated gray levels. Let -SE be the corresponding structuring element with a min imum accumulated 

magnitude among the three directions, i.e.,  

 

Once the structuring element -SE is chosen, the gray-level d ilation (i.e ., local maximum gray  level) is applied to the solar 

cell subimage with the structuring element in direction . That is  

 

If -SE contains all defect points, the dilated value will be still s mall for a dark region. Otherwise, the dilated value will  

be large fo r a bright region in the background. In this study, we do not use a horizontal structuring element ( i.e. 0 -SE) 

because we would like to remove the two horizontal thick bus bars in the solar cell subimage. Fig. 5(a1)–(d1) shows, 

respectively, a defect- free and three defective solar cell sub images in  the EL images. Fig. 5(a2)–(d2) p resents the 

corresponding morphological s moothing results of Fig. 5(a1)–(d1). The filtering results show that the dark regions in the 

background are better smoothed while all the defects of micro-crack, break and finger interruption are well preserved. The 

morphological s moothing process  allows a better ext raction of representative basis images in the ICA learn ing stage and a 

better image reconstruction in the detection stage. 

B. ICA Model and Basis Images: 

In the ICA model [17], [24], the observed mixture signals  X can be expressed as  
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                                                                     (1) 

Where A is an unknown mixing matrix;  S represents the latent source signals, meaning that they cannot be directly 

observed from the mixture signals  X . The ICA model describes how the observed mixture signals  X  are generated by a 

process that uses the matrix A   to mix the latent source signals S . The source signals  are assumed to be mutually 

statistically independent. Based on this assumption, the ICA solution is obtained by finding a  demixing  matrix . It is used 

to linearly transform the observed mixture signals to yield the estimated independent signals  with 

                                                                 (2) 

The separated components in , called independent components  (ICs), are required to be as mutually independent as 

possible. The matrix U is an estimate of the latent source signals . There exist many algorithms performing ICA [25]–[29]. 

FastICA [26], [30] is one of the most widely used techniques to  solve for the ICA model due to  its computational 

efficiency and effectiveness for source separation. The objective of an ICA model is to maximize the statistical 

independency of ICs. 

 

Fig. 5. Morphological smoothing on solar cell subimages: (a1) defect-free sample; (b1)–(d1) three defective samples; (a2)–(d2) 

respective smoothing results of (a1)–(d1). 

Non-Gaussianity is a commonly used measure for statistical independency. It can be given by the negentropy [17] 

                                                      (3) 

where  is a Gaussian random vector o f the same covariance matrix as u . H(.)is the entropy of a random vector u  . 

The negentropy is always non-negative and is zero if and only if the random variab le has a Gaussian distribution. It is well 

justified as an estimator of the non-Gaussianity of the ICs. Since the exact probability density of the random variable is 

unknown, the exact negentropy computation using (3) above is  prohibited. 

An approximation of the negentropy is proposed as follows: 



International Journal of Electrical and Electronics Research   ISSN 2348-6988 (online) 
Vol. 2, Issue 4, pp: (259-270), Month: October - December 2014, Available at: www.researchpublish.com 

 

Page | 265 
Research Publish Journals 

 

                                         (4) 

where v is a Gaussian variable o f zero  mean and unit variance.G(.) is a non-quadratic function, which can  be given by 

  , as suggested by Hyvarinen et al. [17]. The demixing matrix W  with U=WX that maximizes the  

negentropy can be efficiently calcu lated with the fixed-po int search algorithm [26], [27] in FastICA. To find a set of 

representative basis images, a collection of  part itioned solar cells randomly chosen from the defect-free solar modules are 

used as the input data set X in the off-line learn ing process. In the ICA model, each training sample o f a  2D solar cell 

subimage must be reshaped as a 1D row vector in the data matrix X . Denote by f(r,c) the gray level at pixel coordinates 

(r,c)of an   subimage. The data matrix consists of B defect-free samples, i.e.,   , where   is the 

i-th train ing sample, and  with K=M.N. The 1D elements of  are obtained from the 2D 

Subimage f(r, c) , i.e. 

                                                  (5) 

For r=1,2……,M and c=1,2….N . The ICA model for the training data matrix  X  is given by 

                                      U=W.X 

 The demixing matrix is obtained from the FastICA algorithm [30]. The row vectors of the estimated sources with 

  are the basis images. Given a data set Of B train ing subimages, we can obtain up to  B basis images. 

They are used to extract d iscriminant features or reconstruct the image by representing the test image as a linear 

combination of the learned basis images U. 

C. On-Line Defect Inspection: 

For a solar module image under inspection, it is first divided  into indiv idual solar cell sub images by horizontal and 

vertical pro jections. The morphological operat ion then follows for each solar cell subimage to smooth the background. Let 

y be a solar cell subimage in its 1D form for test. The surface characteristics  of th is solar cell y  can be represented by the 

coefficients of the linear combination of the basis images .  That is 

                                                             (6) 

where  is the coefficient vector of the linear combination. It  can be used as the feature vector of the test 

sample y. The coefficient vector b can be obtained by 

                                                                              (7) 

Where  is the pseudo-inverse of U , and is given by    

To determine the presence or absence of defects in the test  sample y , the cosine distance is used to evaluate the similarity 

between the test subimagey with feature vector  b and every  sample with feature vector in  the training data set X .Hence, 

the cosine distance is defined as                                                                                          

                                    (8) 

 Where   the feature vector of training sample  is given by 

                                                                               (9) 

 A cosine distance of zero is obtained if the two compared subimages are identical. The final cosine distance of the test 

sample y  is given by the one with the minimum value among all the training samples in the data set , i.e.,  

                                                     (10)                    
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If the min imum cosine distance  is larger than some predetermined threshold, the test sample y  is classified as a 

defective one. Otherwise, it  is claimed to be defect-free. Since the feature extraction approach is based on the distance 

measure of the test sample with respect to every train ing sample in the data set, the choice of defect-free solar cell 

subimages used in the training data set becomes very critical.We therefore  also propose a self-referential image 

reconstruction process to detect the presence/absence of defects in a test image. Any test  sample ycan be reconstructed 

from the basis images byU. 

                                                                                    (11) 

Where b  is the coefficient vector as defined in (7). The reconstruction 

error of the test sample y  is defined as 

                                                               (12) 

where the constant  c is used as a regularization, and is given by 

                                                                                    (13) 

If the test sample contains defects, we expect that it cannot be well reconstructed from the defect-free basis images and 

the resulting reconstruction error should be distinctly large. If the reconstruction  error is larger than some pre-determined 

threshold, the test sample y  is identified as a defective one. Otherwise, it   is classified as a defect-free solar cell subimage. 

For self-referential image reconstruction with ICA, there is a special finding that is worth noting here. Because the 

demixing matrix W  given by the FastICA algorithm is orthogonal zed, it  indicates that .The reconstruction of a 

test sample y can be thus given by                    (14) 

In the equation above  is the coefficient vector for the linear combination of the original data matrix X . Therefore,  

the image reconstruction approach for detecting the presence/absence of defects in a test sample  y does not require the 

ICA  optimizat ion search, i.e., the learn ing stage can be omitted. The orig inal data set  X itself forms the basis images and 

the same reconstruction error can be obtained either from the ICA basis  images  U or from the original training images X . 

The proposed method needs to calculate the coefficient vector busing (7) and then reconstruct the inspection image y  

from the basis images U  using (11). Given  an image of size and B basis images, the reshaped 1-D image is of size  

with   and the matrix U is of size  , the computational complexity is K(K.B) . for the coefficien t  

vector  B(B.K)and for the reconstruction image .Therefore, the overall computational complexity is  . 

The computation can be easily and efficiently executed with matrix operations. 

III.     EXPERIMENTAL RESULTS 

This section presents the experimental results from a number of multicrystalline solar modules in EL images to evaluate 

the performance of the proposed method. All proposed algorithms  and experiments were implemented on a personal 

computer with a Pentium Core 2 Duo 3.00 GHz processor. The whole image of a solar module is  pixels wide 

with 8-bit gray levels. The solar module under test comprises a matrix of 36 solar cells. The proposed ICA-based defect 

detection method is highly dependent on the defect-free training samples for extracting representative basis images. 

Especially, the image reconstruction approach evaluates the reconstruction error d irect ly from the orig inal  training 

samples. Different defect-free samples used to generate the representative basis images may produce different detection 

results. Therefore, we conducted 10 training sets of randomly chosen defect-free samples for the experiments. Each 

training set contains 30 random defect-free solar cell sub images and, thus, each data set creates a different combination of 

30 basis images. The performance of the proposed method under different scenarios (e.g., input images with and without 
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morphological s moothing, and feature extract ion approach vs. image-reconstruction approach) is evaluated by the 

recognition rate. It is  defined as 

                                                              

where  is the total number of test samples; 

    is the number of mis-detected defect samples; 

     is the number of falsely-detected defect-free samples. 

In order to identify  defective solar cells with large reconstruction  errors + , we use the simple statistical control limit  to 

set the threshold value. It is given by 

 

Where  and are the mean  and standard deviation of  from a set of defect-free test samples. The 

parameter C is a control constant. It is given by 3 in  this study to follow the commonly-used 3-sigma ru le in statistical 

process control. Likewise, the threshold for cosine distance is also determined by the statistical control limit.     

Table I: Solar cell EL images 
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In the experimental results of solar cell EL images, the Fourier transform reconstruction scheme can effectively detect 

fingers interrupt, micro-crack, and breakage. The average computation time is 0.29 seconds for a solar cell image of size 

550×550 p ixels. The experimental results of solar module inspection show that the ICA image reconstruction method can 

provide up to 98.7% of correct classification. The average computation time is 1.08 seconds for a solar module image 

(containing 36 solar cells) of size 1250×1250 pixels.  

Table II: Recognition rate of solar module EL images (Unit：  %) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

IV.    CONCLUSION 

In this paper, we have proposed defect detection methods  based on ICA basis images to detect defective solar cell  

subimages of a large solar module in the electro luminescence image. The line- and bar-shaped defects of micro-cracks, 

breaks and finger interruptions in the solar module can be well presented  as dark regions in the EL image. However, the 

EL image also displays the dislocations and grain boundaries of the mult icrystalline solar wafer as dark regions and 

results in a random inhomogeneous  background. The dark regions of defects and those in the defect-free background can 

be visually observed in the EL image, but they are extremely difficult to be distinguished automatically .We have 

evaluated two discrimination approaches based on ICA basis images. The first feature extract ion approach represents  the 

test image under inspection as a linear combination of the basis images and takes the coefficients as the feature vector. 

The min imum cosine distance of feature vectors between the test image and all training samples is then used as the 

discrimination measure. The second image reconstruction approach synthesizes  the test image by the linear combination 

of the basis images. The reconstruction error between the test image and  its reconstructed image is then used as the 

discrimination measure. Experimental results show that the image reconstruction  approach distinctly outperforms the 

feature extraction approach 

Numbers of train ing 

images 
30 

Distance 
  

images 

No. 
Original image 

Morphology 

image 
Original image 

Morphology 

image 

Group 1 91.2 91.2 91.2 92.5 

Group 2 90.0 91.2 91.2 92.5 

Group 3 92.5 95.0 95.0 97.5 

Group 4 86.2 86.2 87.5 87.5 

Group 5 91.2 91.2 91.2 92.5 

Group 6 88.7 91.2 90.0 93.7 

Group 7 90.0 91.2 91.2 92.5 

Group 8 91.2 95.0 91.2 95.0 

Group 9 95.0 97.5 95.0 98.7 

Group 10 90.0 91.2 91.2 91.2 

Mean 90.6 92.1 91.5 93.4 

Std. Dev 2.31    3.08 2.19   3.16 

Min. 86.2 86.2 87.5 87.5 

Max. 95.0 97.5 95.0 98.7 

yy ˆoD yy ˆ cDc
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